Exercise 7.4.2

Show that Laguerre's equation, like the Bessel equation, has a regular singularity at $x=0$ and an irregular singularity at $x=\infty$.

Solution

Laguerre's equation is a second-order linear homogeneous ODE.

$$
x y^{\prime \prime}+(1-x) y^{\prime}+a y=0
$$

Divide both sides by x so that the coefficient of $y^{\prime \prime}$ is 1 .

$$
y^{\prime \prime}+\frac{1-x}{x} y^{\prime}+\frac{a}{x} y=0
$$

There are singular points where the denominators are equal to zero: $x=0 . x=0$ is regular because the following limits are finite.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} x\left(\frac{1-x}{x}\right)=\lim _{x \rightarrow 0}(1-x)=1 \\
& \lim _{x \rightarrow 0} x^{2}\left(\frac{a}{x}\right)=\lim _{x \rightarrow 0} a x=0
\end{aligned}
$$

In order to investigate the behavior at $x=\infty$, make the substitution,

$$
x=\frac{1}{z},
$$

in Laguerre's equation.

$$
x y^{\prime \prime}+(1-x) y^{\prime}+a y=0 \quad \rightarrow \quad \frac{1}{z} y^{\prime \prime}+\left(1-\frac{1}{z}\right) y^{\prime}+a y=0
$$

Use the chain rule to find what the derivatives of y are in terms of this new variable.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d z} \frac{d z}{d x}=\frac{d y}{d z}\left(-\frac{1}{x^{2}}\right)=\frac{d y}{d z}\left(-z^{2}\right) \\
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d z}{d x} \frac{d}{d z}\left[\frac{d y}{d z}\left(-z^{2}\right)\right]=-\frac{1}{x^{2}}\left(-z^{2} \frac{d^{2} y}{d z^{2}}-2 z \frac{d y}{d z}\right)=-z^{2}\left(-z^{2} \frac{d^{2} y}{d z^{2}}-2 z \frac{d y}{d z}\right)
\end{aligned}
$$

As a result, the ODE in terms of z is

$$
\frac{1}{z}\left[-z^{2}\left(-z^{2} \frac{d^{2} y}{d z^{2}}-2 z \frac{d y}{d z}\right)\right]+\left(1-\frac{1}{z}\right) \frac{d y}{d z}\left(-z^{2}\right)+a y=0
$$

or after simplifying,

$$
z^{3} \frac{d^{2} y}{d z^{2}}+\left(z^{2}+z\right) \frac{d y}{d z}+a y=0
$$

Divide both sides by z^{3} so that the coefficient of $d^{2} y / d z^{2}$ is 1 .

$$
\frac{d^{2} y}{d z^{2}}+\frac{z^{2}+z}{z^{3}} \frac{d y}{d z}+\frac{a}{z^{3}} y=0
$$

At least one of the denominators is equal to zero at $z=0$, so $z=0$ is a singular point. Since at least one of the following limits is infinite, it is in fact irregular.

$$
\begin{aligned}
& \lim _{z \rightarrow 0} z\left(\frac{z^{2}+z}{z^{3}}\right)=\lim _{z \rightarrow 0}\left(1-\frac{1}{z}\right)=\infty \\
& \lim _{z \rightarrow 0} z^{2}\left(\frac{a}{z^{3}}\right)=\lim _{z \rightarrow 0} \frac{a}{z}=\infty
\end{aligned}
$$

Therefore, $x=\infty$ is an irregular singular point of the Laguerre equation.

